

EXTREME PRECISION FOR OPTIMAL PERFORMANCE

THIELENHAUS

MICROFINISH

About us

Ernst Thielenhaus machine factory was founded in 1909 and today belongs to Thielenhaus Technologies GmbH as the division Thielenhaus Microfinish. The company has developed over the course of several decades into the most important global player within surface precision machining.

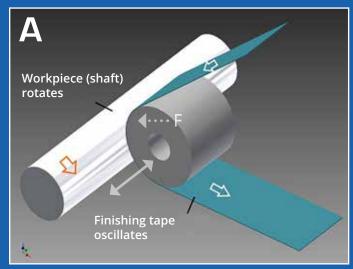
Microfinish has been the technological benchmark in surface precision machining for decades, given that it has experienced significant advances in terms of efficiency, functional reliability, noise minimisation and miniaturisation.

The high-tech process is used in all areas where the highest degrees of precision and durability, the lowest levels of friction and operational noise, long service lives and material efficiency are required.

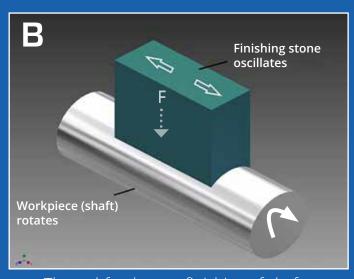
What is Microfinish?

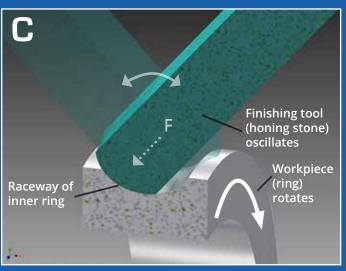
- The terms 'finish', 'Superfinish' and 'Microfinish' refer to a high-precision process for improving workpiece surfaces and geometry.
- Rotation of the workpiece, combined with oscillation of the finishing tool, produces optimal workpiece surfaces and geometry.

Microfinish: Benefits at a glance


- Noise reduction
- Reduced energy consumption
- Extended service life
- Less wear
- Higher load-bearing capacity
- Reduced friction

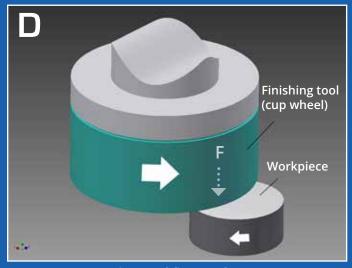
Enhanced surface qualities:


- Roundness
- Straightness
- Roughness
- Cylindricity
- Waviness
- Parallelism

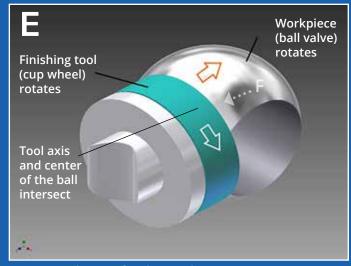

How Microfinish works (examples)

Tape finishing of shafts

Throughfeed stone finishing of shafts



Finishing of ball and roller bearing raceways


When machining cylindrical workpieces – like journals on driveshafts – a Microfinish/Superfinish tool (stone or tape) is placed against the surface of the workpiece. The tool then oscillates while the workpiece rotates (fig. A/B/C).

Stone finishing is applied for roller bearings, roll barrels, piston pins and shock absorber rods. Tape is used mostly for machining crankshafts, drive shafts as well as steering racks.

For machining flat or spherical surfaces cup wheels are brought in contact with the workpiece by precision spindles.

Finishing of flat surfaces

Finishing of spherical components

AUTOMOTIVE

ROLLER BEARI

Particularly in the automotive sector, superior precision and repeatability are preconditions for higher performance, reliability, durability and savings on energy and raw materials. Employing a Microfinish/Superfinish process, enables the engineer to define part surfaces and geometries to improve the function of any component.

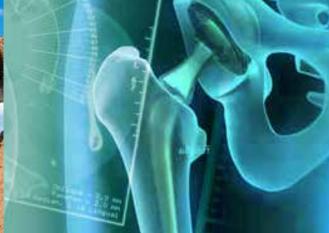
Microfinish/Superfinish processing significantly improves the roundness and roughness of roller bearing surfaces, enabling top quality.

Components produced:

- Crankshafts
- Camshafts
- 🕂 Connecting rods
- 🕂 Inlet and outlet valves
- 🕂 Synchronous wheels
- 🕂 Planetary gears
- 🕂 Shock absorber rods
- Brake discs
- Rotor shafts
- Seal seats

- Balance shafts
- + Cams and tappets
- Piston pins
- 🕂 Universal joints
- Steering racks
- Shim rings
- 🕂 Injectors
- + Adapter plates
- Gear wheels and shafts including bearing seats

Components produc


- Ball bearings
- Roller bearings
- Tapered roller bearings
- Cylindrical roller bearings
- Self-aligning bearings, etc., and their rolling elements

NGS HYDRAULICS/PNEUMATICS

MEDICAL

Valves with finished valve balls made from steel and other materials, such as ceramics, meet the most stringent requirements for safety and the environment.

Our customers offer market-leading implants for the hip, knee, ankle, and shoulder.

ed:

Components produced:

- Valve balls
- Seal seats
- Pump pistons
- Pump gears
- Pump rotors
- Port heads
- Pump covers
- Spherical bearings

Components produced:

- Endoprosthesis spherical
- Endoprosthesis spherical caps
- Flexible discs

Microfinish

CenterStar

Flexible processing of all shaft types

Modular machine design – for maximum flexibility and accessibility with minimum space requirements

Reduced costs per unit due to high processing capacity with short cycle times

Able to integrate all manner of processes, such as stone, tape, CAB and flat finishing as well as brush deburring

CamStar

Camshaft finishing

Multi-sided, fitted with two different tool holder units at each station for double output

One or two stations for increased flexibility or output

Faster and easier tool changes

	Example workpiece: Balance shaft	
	Before Microfinish	After Microfinish
Roughness Rvk Rpk Roundness	Rk 0.7 µm 0.5 µm 0.5 µm < 3 µm	Rk 0.16 µm 0.1 µm 0.03 µm < 1.5 µm

	Example workpiece: Cams	
	Before Microfinish	After Microfinish
Lobes	D- 40 45	Dis 40 Cours
Roughness	Ra ≤ 0.45 µm -	Rk < 0.6 µm Rvk < 0.6 µm
	_	Rpk < 0.35 μm
	-	Wt < 1 μm ¹
Journals Roughness	Ra ≤ 0.9 µm	Ra < 0.2 µm

Machines

CrankStar

Crankshaft finishing

Cost-effective and reliable processing of crankshaft mains, pins, seal diameter and thrust faces

Optional: Loading/unloading during processing with external automation systems, independently of production time

Sphero

Precision-grinding and finishing of spherical surfaces

Microfinish unit with MicroSens process control, and tool wear compensation

Automatic tool changer with precision tool holder

Compact, ergonomic design

Example workpiece: Crankshaft

Before Microfinish After Microfinish

Pins & mains

Roughness $Rz \le 4 \mu m$ $Rz \le 1 \mu m$

 $Rk \le 2.1$ $Rk \le 0.18$ $Rpk \le 0.29$ $Rpk \le 0.05$

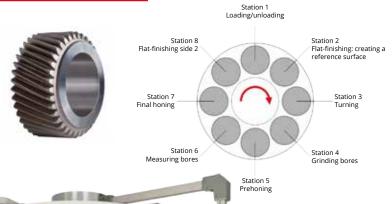
Thrust bearing

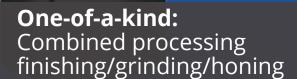
Roughness $Rz \le 4 \mu m$ $Rz \le 1 \mu m$

Example workpiece: Ball & spherical cup

Before Microfinish After Microfinish

Roughness – 0.02 µm Rz


Roundness – 1 – 2 µm


THIELENHAUS

285 =

Microfinish

Micros

MicroStar FGH

Combined processing (finishing, grinding, honing)

- Lower overall investment due to integration of one or more processes with corresponding automation
- Lower space requirements due to process combinations at a diameter of only 1.5 m
- Extremely high workpiece quality in machine accuracy free of defects caused by repeated clamp and unclamping

MicroStar EVO

MicroStar EVO

Flat surface finishing

- Center column, rotary indexing table with up to 12 workpiece spindles
- Loading and unloading independent of production time due to concurrent processing on all stations
- Higher output due to extremely short cycle times

Example workpiece: Injection nozzle

Example workpiece: Gear wheel

 $2 \mu m$

Before Microfinish After Microfinish Surface turned $Rz \le 1.5 \mu m$

Flatness –
Radial and
axial run-out –
Cylindricity –

≤ 10 µm < 3 µm < 3 µm Roughness turned Rz \leq 0.5 μ m
Flatness - 1 μ m concave
Needle stroke
tolerance \pm 0.2 mm \pm 0.005 mm

tolerance \pm 0.2 mm \pm 0.005 mr Edge rounding – \leq 0.05 mm

Roundness

Machines

MicroStar 300

Flat surface finishing

Designed for both small and large workpieces with a complex contour

Up to 3 vertical arranged workpiece spindles

Small machine footprint

NanoStar

Flat surface finishing

Rotary indexing table with max. 4 workpiece spindles and 2 tool spindles

Low space requirements

Excellent accessibility for loading, unloading and maintenance

Example workpiece: Injector body

Before Microfinish After Microfinish

Roughness Development of flatness

Bore depth

turned

Edge rounding turned

 $\pm 0.15 \, \mu m$

 $Rz \le 0.5 \mu m$

 $0.9 \mu m \pm 0.3 \mu m$ concave $\pm 0.025 \, \mu m$

 \leq 0.05 μ m

Example workpiece: Planetary gear

Before Microfinish After Microfinish

Roughness **Flatness**

turned

 $Rz \le 1.6 \mu m$ ≤ 0.02 mm

THIELENHAUS V-5M

Double-sided surface grinding

- Cast-steel machine bed in closed box frame design for optimal damping and rigidity
- Able to use wheels ranging from conventional to diamond or CBN
- Swivel transport disc holder for optimal tool changing and access to the dresser

InfinityFlow-through and plunge finishing

- Transport roller lengths of up to 1,100 mm with usable rollers diameters of up to 275 mm
- Lifting and lowering using pneumatic proportional valves, programmed part storage
- Faster tool changes and short retooling times as well as shared bearing housings for fast roller changes

Example workpiece: Piston ring

Before Microfinish After Microfinish

Roughness Thickness **Parallelism Flatness**

± 0.6 mm

Ra 1.6 µm ± 0.05 mm 0.02 mm 0.01 mm

Example workpiece: Shock absorber rod

Before Microfinish After Microfinish

Roughness Ra 0.12 – 0.20 µm $Ra \le 0.03 \mu m$ $Rz \le 0.2 \, \mu m$

Machines

CUBE evo

Finishing of shaft bearings and cams with maximum flexibility

Self-preparation of the machine in combination with Industry 4.0

Lot size 1

Error-free and fast changeover times

PowerCUBE

Finishing of shaft parts at highest productivity

Special space-saving Microfinish solution

Innovative and user-friendly touchscreen software

Up to six horizontally arranged workpiece spindles

Example workpiece: Pump wheel shaft

Before Microfinish After Microfinish

Roughness bearing Roughness seal seat

Rz 2.2 – 2.8 μm

Rz 0.4 – 0.6 μm

Ra 0.6 µm

Ra 0.2 – 0.6 µm

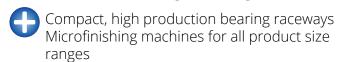
Microfinish Machines

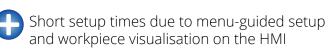
Outer diameter of roller bearing rings

05 – 19 mm

10 – 90 mm

10 - 90 mm




60 – 120 mm

85 – 200 mm

BearingStar Ball and roller bearing finishing

180 - 320 mm

200 - 650 mm

Example workpiece: 4-point ball bearing

Before MicrofinishRoughness Ra 0.3 – 0.4 μm
Roundness < 2 μm

After Microfinish
Ra ≤ 0.04 µm
< 1.5 µm

We recommend using our MicroTools as distinguished by their consistency and near total lack of variation in quality from lot to lot.

- Finishing stones and cup wheels
- Finishing tape / finishing film
- Contact shoe system for tape finishing units
- Brushes for deburring processes

Prototyping & Contract Manufacturing

It is becoming increasingly common that components and workpieces have to satisfy complex geometric requirements and/or greater loads. In such cases, surface precision machining is generally applied. When it comes to start-up productions, prototype machining, our contract manufacturing service Thielenhaus Microfinish – the market-leading manufacturer of high-precision machine tools – is available to you.

Shafts

Balls and sockets

+ Centerless

Flat & special parts

Service

Thielenhaus Technologies takes the term 'customer service' seriously. We aim to maximise global availability of our machines. To ensure workpiece quality and availability, we offer you flexible support in training your production team, and our service team is always ready to help you with any new needs that may arise.

- Inspections
- + Replacement parts
- 4 24/7 service hotline

- Training
- Modifications

The Power of Precision.

Thielenhaus Technologies GmbH Schwesterstraße 50 42285 Wuppertal, Germany +49 (0)2 02 - 4 81-0 **1** +49 (0)2 02 - 45 04 45 www.thielenhaus.com

Thielenhaus Technologies GmbH Automotive Innovation Am Bach 14 a 78098 Triberg, Germany +49 (0) 175 - 4 35 13 57 germany@thielenhaus.com www.thielenhaus.com

Thielenhaus Superfinish Innovation AG St. Gallerstraße 52 9548 Matzingen, Switzerland +41 (0) 52 376 26 20 +41 (0) 52 376 26 19 switzerland@thielenhaus.com

42925 W. Nine Mile Road Novi, MI 48375, U.S.A. +1 2 48 3 49-94 50 +1 2 48 3 49-94 57 ✓ usa@thielenhaus.com

www.thielenhaus.us

www.thielenhaus.com

Thielenhaus Microfinish do Brasil Rua Dona Francisca, 8300 -Sala 7 – Unid. 15 – Bloco L Condomínio Perini Business Park CEP 89219-600 Joinville/SC, Brazil + 55 47 9994-6094 www.thielenhaus.us

Thielenhaus Machinery (Shanghai) Co., Ltd Jiangtian Dong Lu 212, building 7 Songjiang Industrial Zone 201613 Shanghai, P.R. China +86 21 67 75 31 57 **+86 21 33 52 87 67** www.thielenhaus.cn

Thielenhaus Microfinish INDIA PVT LTD No. 38, Ground Floor SRS Road, Peenya 1st Stage, Ward 38 Bengaluru 560058 Karnataka State, India **** +91 90 21 91 86 85 +91 80 48 52 45 28

india@thielenhaus.in www.thielenhaus.us

